1.(1)(a)
$$y = e^{x} \sin x$$

$$\frac{dy}{dx} = e^{x} (\sin x + \cos x)$$

$$\frac{d^{2}y}{dx^{2}} = e^{x} (\sin x + \cos x + \cos x - \sin x) = 2e^{x} \cos x$$

$$\frac{d^{2}y}{dx^{2}} = 2e^{x} (\cos x - \sin x)$$

$$\frac{d^{2}y}{dx^{4}} = 2e^{x} (\cos x - \sin x - \sin x - \cos x) = -4e^{x} \sin x = -4y$$
(b) Hence

$$\frac{dy}{dx^{3}} = \frac{d^{4}}{dx^{4}} \left(\frac{d^{4}y}{dx^{4}}\right) = -\frac{d^{4}}{dx^{4}} (-4y) = -4\frac{d^{4}y}{dx^{4}} = (-4)^{2}y = 16y$$
(c) Hence

$$\frac{d^{4}y}{dx^{4}} = (-4)^{n}y.$$
(c) The statement P(n) is that

$$\frac{d^{4ny}}{dx^{4}(x+1)} = (-4)^{n}y.$$
(c) The statement P(n): $\frac{d^{4ny}}{dx^{4}} = (-4)^{n}y$ is true for n = 1 from above.
Assume P(k) is true, $k \in \mathbb{N}$, *i.e.* $\frac{d^{4k}y}{dx^{4k}} = (-4)^{k}y.$ Then

$$\frac{d^{4(k+1)}y}{dx^{4(k+1)}} = \frac{d^{4}}{dx^{4}} \left(\frac{d^{4k}y}{dx^{4}}\right) = \frac{d^{4}}{dx^{4}} \left(-4)^{k}y.$$
Hence P(k) $\Rightarrow P(k+1)$ and so by induction P(n) is true for all $n \in \mathbb{N}$.
(i) The tank has dimensions L (length), w (width) and h (height)
(a) $\frac{\sqrt{w \tan \theta}}{\theta}$
(b) If $\tan \theta < \frac{h}{w}$ the volume of water spilled is L × Area upper triangle
 $= L \times \frac{1}{2} w.$ w tan $\theta = \frac{w^{2}L \tan \theta}{2}$.
(b) If $\tan \theta > \frac{h}{w}$ the volume of vater spilled is $L \times Area trapezium$
 $= L \times (wh - \frac{1}{2}h \cdot h \cot \theta) = \frac{h}{2} (2w - h \cot \theta$.
R3 (AG)

.

٠

2.
$$L_{1}: \frac{x-1}{2} = \frac{y-3}{3} = \frac{z-1}{2}$$
; $L_{2}: \frac{3-x}{4} = \frac{2y-3}{4} = \frac{z+1}{2}$
(a) $L_{1}: x = 1 + 2\lambda$
 $L_{2}: x = 3 - 4\mu$
 $y = 3 + 3\lambda$
 $y = \frac{3}{2} + \frac{3}{2}\mu$
 $z = 1 + 2\lambda$
 $z = -1 + 2\mu$
and so
 $\vec{r_{1}} = \left(\frac{1}{3}\right) + \lambda \left(\frac{2}{3}\right)$
 $\vec{r_{2}} = \left(\frac{3}{3}\right)^{2} + \mu \left(\frac{-4}{3}\right)^{2}\right)$
(b) For I_{1} and L_{2} to intersect: we must have
 $2\lambda + 4\mu = 2: 3\lambda - \frac{3}{2}\mu = -\frac{3}{2};$
 $2\lambda - 2\mu = -2.$
Adding the first and the third equations gives $\lambda = \frac{2}{3}$ and hence $\mu = -\frac{1}{3}$ which do
not satisfy the second equation. Hence the lines do not intersect.
The lines are not parallel as the dirction vectors are not in the same direction.
(c) A plane that is perpendicular to L_{2} has the equation
 $-4x + \frac{3}{2}y + 2z = d$
and d can be chosen so that the plane contains (1, 3, 1). For example $d = \frac{5}{2}$ and the
plane is then
 $8x - 3y - 4z + 5 = 0$
(d) $\left(\frac{2}{3}\right) \times \left(\frac{3}{4}\right)^{2} = \left[\frac{1^{2}}{7} \overrightarrow{T} \overrightarrow{R}^{2}\right] = \left(-\frac{1}{15}\right) = 3\left(-\frac{1}{-5}\right)$
(e) The distance is $1(\overrightarrow{r_{1}} - \overrightarrow{r_{2}})$. $\overrightarrow{n_{1}}$ where \overrightarrow{n} is a unit vector in the
direction $(1, -4, 5)$. Hence it is
 $\frac{-1}{\sqrt{1^{2} + 4^{2} + 5^{2}}} \left(-\frac{3^{2}}{3^{2}}\right) \cdot \left(-\frac{1}{5}\right) = \frac{2}{\sqrt{42^{2}}} = \frac{\sqrt{42}}{21}$.
(i) Taking a coordinate system with origin at the beacon then the vector
representing the path of the aeroplane is shown in the diagram below.
A vector in the direction of the flight path is
 $V = (0-6) \mathbf{i} + (8-0) \mathbf{j} + (5-5) \mathbf{k} = -6\mathbf{i} + 8\mathbf{j}$
The distance from the origin to the line is $\frac{|P \times \mathbf{V}|}{\sqrt{1}}$ where **P** is any point
on the line. Taking **P** as $0^{1} + 5\mathbf{k}$ then
 $P \times V = \begin{vmatrix} \mathbf{i} & \mathbf{i} & \mathbf{i} & \mathbf{k} \\ -6 & \mathbf{0} & \mathbf{0} \end{vmatrix} = -40\mathbf{i} - 30\mathbf{j} + 48\mathbf{k}$
and so $+P \times V = \sqrt{40^{2} + 30^{2} + 48^{2}} = \sqrt{4804}$.
(2)

.

••••

1

Since
$$|V| = \sqrt{36 + 64} = 10$$
 then
 $\frac{|P \times V|}{|V|} = \sqrt{4804} = 6.931.$
Hence the closest the plane comes to the beacon is 6931 metres.
(6, 0, 5)
(0, 0, 0)
(0, 0, 0)
(0, 0, 5)
(0, 0, 0)
(0, 0, 5)
(0, 0, 0)
(0, 0, 5)
(0, 0, 0)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 0, 5)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 1, 1)
(0, 1

(ii) (a) The two component heater will operate if one or both of its components	MARKS
work when the heater is switched on. Thus	
P (two component heater works)	
$= (1-q)^2 + 2q(1-q)$	
$= 1 - q^2 = (1 - q) (1 + q).$	R1 (AG)
The four component heater will operate if two, three or four of its components	
work when the heater is switched on. Thus	
P (four component heater works)	
$= (1-q)^4 + 4q(1-q)^3 + 6q^2 (1-q)^2$	
$= (1-q)^{2} \{ 1-2q+q^{2}+4q-4q^{2}+6q^{2} \}$	
$= (1-q)^2 \{1+2q+3q^2\}$	
$= 1 - 4q^3 + 3q^4$	R1, C1
(b) The heaters are equally likely to operate when	
$1 - q^2 = 1 - 4q^3 + 3q^4$	
or when	
$1 - q^2 - 1 - 4q^3 + 3q^4 = 0,$	
ie	
$(3q^2 - 4q + 1)q^2 = 0.$	R2, C1
But the heaters are equally likely to operate if $q = 1$ and so $(1 - q)$ must be a	,
factor of the above polynomial and so it can be written as	
$(q-1)(3q-1)q^2 = 0.$	
	C2
Thus the heaters are equally likely to work if $q = 0, \frac{1}{3}$ or 1.	
(c) For $\frac{1}{3} < q < 1$. $1 - q^2 > 1 - 4q^3 + 3q^4$ and so the two component heater	
is more reliable. For the remaining values, $0 < q < \frac{1}{3}$, the four component heater	
is more reliable.	R1, C1
4 (i) (a). The curves of $y = \sqrt{x}$, and $y = 6 - x$ intersect when	
$\sqrt{x} = 6 - x \implies x = 4 \text{ or } x = 9.$	
The curves of $y = \sqrt{x}$, and $y = c$ intersect when $x = c^2$ and the curves of	
y = 6 - x and $y = c$ intersect at $x = 6 - c$. Hence the region is	
y = 0 - x and $y = c$ intersect at $x = 0 - c$. Thence the region is	
c	C3, one mark
	for each
	boundary
$0 c^2$ 4 6-c 6	
	1

•

-

(b) The required area is then

$$\int_{c^{2}} {\left\{ \sqrt{x} - c \right\} dx} + \frac{1}{2} (2 - c)(6 - c - 4)$$

$$= \frac{2}{3} x^{3/2} - cx \left| \frac{4}{c^{2}} + \frac{1}{2} (2 - c)^{2} \right|$$

$$= \frac{2}{3} (8 - c^{3}) - c (4 - c^{2}) + \frac{1}{2} (2 - c)^{2}$$

$$= \frac{22}{3} - 6c + \frac{c^{2}}{2} + \frac{c^{3}}{3}.$$
M3, A3

(c) When c = 2 the line y = c goes through the point of intersection of the other

two curves and so the area is zero. Setting
$$c = 2$$
 in the above expression gives
 $\frac{22}{3} - 6 \times 2 + \frac{4}{2} + \frac{8}{3} = \frac{44 - 72 + 12 + 16}{6} = \frac{72 - 72}{6} = 0.$

(ii)(a) The area of sheet metal required for one can is equal to the surface area of the can and the surface area is

A = area of ends of can plus area of rectangle used to form cylinder = $2\pi r^2 + 2\pi rh$.

(b) Now the volume of the can is equal to area of base times the height and this is 500cm³. Thus

$$\pi r^2 h = 500 \implies h = \frac{500}{\pi r^2}$$

and substituting for h into $A = 2\pi r (r + h)$ gives

A =
$$2\pi r \left\{ r + \frac{500}{\pi r^2} \right\} = 2\pi r^2 + \frac{1000}{r}$$
. M2, A2

Now r must be is positive and S is a continuous function of r. It is seen that as $r \rightarrow 0$, $A \rightarrow \infty$, and as $r \rightarrow \infty$, $A \rightarrow \infty$.

Hence A has no maximum value, any stationary point of A will be a minimum. (c) Differentiate A with respect to r to give

$$\frac{\mathrm{dA}}{\mathrm{dr}} = 4\pi r - \frac{1000}{r^2}$$

and setting this to zero gives

 $4\pi r^3 = 1000 \implies r = \frac{10}{\sqrt[3]{4\pi}}.$ M2, A1

This is the only stationary point and so it must be a minimum**.

R1

R3

C1

Then, since $h = \frac{500}{\pi r^2}$, it follows that $h = \frac{500}{100\pi} (4\pi)^{2/3} = \frac{5(4)^{2/3}}{\pi^{1/3}} = \frac{20}{\sqrt[3]{4\pi}}$.

** Alternatively,

$$\frac{d^2 A}{dr^2} = 4\pi + \frac{2000}{r^3}$$

and when $r = \frac{10}{\sqrt[3]{4\pi}}$ this has the value $4\pi + \frac{2000 \times 4\pi}{1000} = 12\pi$

and since this is positive, the point is a minimum.

5.(a) Given M be th			matrice	es {I, A,	B. C, I	DE}wh	ere I is the	MARKS
identity matrix and the others are $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}, C = \begin{pmatrix} -1 & -1 \\ 0 & 1 \end{pmatrix}, D = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}, E = \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}$)	
then by matrix multi	plication	the op	eration	table is				
	<u> </u>	A	В	<u> </u>	D	E		
1	1	Α	В	С	D	E		
А	А	I	С	В	Е	D		
В				А		С		
C				I	Α	В		C4, less 1 per
D			I	Е	В	А		error.
E	Е	B	A	D	С	I		
To be a group under								
given, there has to b								
Clearly I is the ident	-						ements I, A, I	
C, B and E are the i					-			R2
From the table it is c	lear tha	tAB =	C but E	BA = Ea	and as C	$C \neq E$ the	e group is not	1
abelian.								R3
(1) TT			ef the m	umbara	1 7 and	2 and a	o Sa has six	
(b)There are six (3!	-		or the n	umbers	1,2 and	5 and s	0 33 has six	
elements. These are		2 3 7	0a -	Γ1	2 37			
p ₁ = and the others are	L 1	2 3	p ₂ =	L 2	3 1			
and the others are								
$p_3 = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}$	p4 = [1 2 3 1 3 2	1	p5 =	$\begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 1 \end{bmatrix}$	$p_6 = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$	3 3] C4
	-	• • •	-					
The many table is					•			
The group table is		1	70			ne	The	
•		្រា	pa	p 3	p4	p 5	D6	
	 P1 P2	p1	P2	P3	p4	p5	P6	
	P2	р1 Р2	P2 P3	рз р1	Р4 Р5	р5 Р6	P6 P4	
	Р2 Р3	р1 Р2 Р3	P2 P3 P1	P3 P1 P2	Р4 Р5 Р6	р5 р6 р4	P6 P4 P5	C4, less 1 per
	P2 P3 P4	p1 p2 p3 p4	P2 P3 P1 P6	P3 P1 P2 P5	P4 P5 P6 P1	р5 р6 р4 р3	P6 P4 P5 P2	C4, less 1 per error
	P2 P3 P4 P5	p1 p2 p3 p4 p5	P2 P3 P1 P6 P4	P3 P1 P2 P5 P6	P4 P5 P6 P1 P2	P5 P6 P4 P3 P1	P6 P4 P5 P2 P3	
	P2 P3 P4	p1 p2 p3 p4	P2 P3 P1 P6	P3 P1 P2 P5	P4 P5 P6 P1	р5 р6 р4 р3	P6 P4 P5 P2	
(c) Two groups G ₁	P2 P3 P4 P5 P6	P1 P2 P3 P4 P5 P6	P2 P3 P1 P6 P4 P5	P3 P1 P2 P5 P6 P4	p4 p5 p6 p1 p2 p3	P5 P6 P4 P3 P1 P2	P6 P4 P5 P2 P3 P1	error
	P2 P3 P4 P5 P6 and G2	p1 p2 p3 p4 p5 p6 are ison	P2 P3 P1 P6 P4 P5 morphic	p3 p1 p2 p5 p6 p4 : if there	P4 P5 P6 P1 P2 P3 e is a on	p5 p6 p4 p3 p1 p2 e to one	P6 P4 P5 P2 P3 P1 corresponde	error
(c) Two groups G ₁	P2 P3 P4 P5 P6 and G2 ving f(a	p1 p2 p3 p4 p5 p6 are ison * b) =	p2 p3 p1 p6 p4 p5 norphic f(a) ⊕	p3 p1 p2 p5 p6 p4 c if there f(b) for	p4 p5 p6 p1 p2 p3 e is a on r all a, b	p_{5} p_{6} p_{4} p_{3} p_{1} p_{2} $e \text{ to one}$ $e \in G_{1} \text{ w}$	P6 P4 P5 P2 P3 P1 corresponde	error
(c) Two groups G ₁ f : G ₁ → G ₂ . satisfy	P2 P3 P4 P5 P6 and G2 ving f(a ssociate	p1 p2 p3 p4 p5 p6 are ison + b) = d with (P2 P3 P1 P6 P4 P5 morphic f(a) ⊕ G1 and (p3 p1 p2 p5 p6 p4 : if there f(b) for G ₂ respe	p4 p5 p6 p1 p2 p3 e is a on all a, b	p_{5} p_{6} p_{4} p_{3} p_{1} p_{2} $e \text{ to one}$ $e \in G_{1} \text{ w}$	p6 p4 p5 p2 p3 p1 corresponde here * and #	error nce C3
(c) Two groups G_1 f: $G_1 \rightarrow G_2$. satisfy are the operations a From the two group	P2 P3 P4 P5 P6 and G2 ving f(a ssociate tables a	p1 p2 p3 p4 p5 p6 are ison + b) = d with 0 above a	p2 p3 p1 p6 p4 p5 $f(a) \oplus$ G1 and 0 n isomo	p3 p1 p2 p5 p6 p4 : if there f(b) for G ₂ respectively	p4 p5 p6 p1 p2 p3 e is a on e all a, b ectively between	p_{5} p_{6} p_{4} p_{3} p_{1} p_{2} $e \text{ to one}$ $e \in G_{1} \text{ w}$ $h the growthing the growthin$	P6 P4 P5 P2 P3 P1 corresponde here * and #	error cc3
(c) Two groups G_1 f: $G_1 \rightarrow G_2$. satisfy are the operations a From the two group	P2 P3 P4 P5 P6 and G2 ving f(a ssociate tables a	p1 p2 p3 p4 p5 p6 are ison + b) = d with 0 above a	p2 p3 p1 p6 p4 p5 $f(a) \oplus$ G1 and 0 n isomo	p3 p1 p2 p5 p6 p4 : if there f(b) for G ₂ respectively	p4 p5 p6 p1 p2 p3 e is a on e all a, b ectively between	p_{5} p_{6} p_{4} p_{3} p_{1} p_{2} $e \text{ to one}$ $e \in G_{1} \text{ w}$ $h the growthing the growthin$	P6 P4 P5 P2 P3 P1 corresponde here * and #	error nce C3
(c) Two groups G_1 f: $G_1 \rightarrow G_2$. satisfy are the operations a From the two group	P2 P3 P4 P5 P6 and G2 ving f(a ssociate tables a $2 \rightarrow B$,	p_1 p_2 p_3 p_4 p_5 p_6 are ison $+ b) =$ d with (above a) $p_3 -$	p_2 p_3 p_1 p_6 p_4 p_5 morphic f(a) ⊕ $G_1 \text{ and } G$ n isomo $\rightarrow D, p$	p3 p1 p2 p5 p6 p4 : if there f(b) for G2 respective orphism $b4 \rightarrow A$	p4 p5 p6 p1 p2 p3 e is a on r all a, b ectively between	p_{5} p_{6} p_{4} p_{3} p_{1} p_{2} $e \text{ to one}$ $e \in G_{1} \text{ w}$ $h the growthing the growthin$	P6 P4 P5 P2 P3 P1 corresponde here * and #	error cc3

,

(d) Denoting the operation of composition by \circ and considering the two elements	MARKS				
$s_1 = \begin{bmatrix} 1 & 2 & 3 & \dots \\ 1 & 3 & 2 & \dots \end{bmatrix}$ and $s_2 = \begin{bmatrix} 1 & 2 & 3 & \dots \\ 3 & 2 & 1 & \dots \end{bmatrix}$					
in which each number after 3 is unchanged, we obtain					
$s_1 \circ s_2 = \begin{bmatrix} 1 & 2 & 3 & \dots \\ 2 & 3 & 1 & \dots \end{bmatrix}$	Cı				
with all other elemnts unchanged but					
$s_2 \circ s_1 = \begin{bmatrix} 1 & 2 & 3 & \dots \\ 3 & 1 & 2 & \dots \end{bmatrix}$	Cl				
Hence $s_1 \circ s_2 \neq s_2 \circ s_1$ and so the group is not Abelian.	R2				
In particular S ₃ is not abelian and as S ₃ is isomorphic to the set M in (a) under multiplication, that group is not abelian either.	R2				
(e) From the group table in (a) it is seen that $AE = D$ and $D^{-1} = B = EA = E^{-1} A^{-1}$.	C2				
This suggests that if x and y are elements of a group G then $(xy)^{-1} = y^{-1} x^{-1}$.	R2				
Consider the operation $(xy)(y^{-1} x^{-1}) = x(yy^{-1})x^{-1}$					
by associativity, $= x e x^{-1} = x x^{-1} = e$					
and so the suggested result is true for all groups.	R4, split at discretion				
Note					
It is possible that some candidates will have a group table that is the mirror image of the one given, mirrored about the main diagonal, as a result of taking the compositions in the reverse order. For example, in the above table p_2p_4 is p_4 first					

then p_2 , to give p_6 . In the other order the result would be p_5 . Award the marks

provided the same approach is consistently applied.

6 (i) Starting at E, though any junction could be the starting point, use the edge EF, the one of minimum length. Then take the edge of minimum length from E or F, other than EF. This is EH (or it could be FC). Then take HI, the edge of minimum length from E, F or H.

In this way we obtain the minimum spanning tree

EF, EH, HI, FC, HG, CB, BD, DA

with a total length of 1+3+2+3+4+4+3+2 = 22.

(ii)(a) The adjacency matrix for the given graph is

A

$$-\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

and squaring this yields

$$A^{2} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 & 2 \\ 0 & 2 & 2 & 0 \\ 0 & 2 & 2 & 0 \\ 2 & 0 & 0 & 2 \end{bmatrix}$$
 C1
ting from v₁ to v₄ using two edges.

There are thus two ways of getting from v_1 to v_4 using two edges. Squaring again

gives

$$A^{4} = \begin{bmatrix} 2 & 0 & 0 & 2 \\ 0 & 2 & 2 & 0 \\ 0 & 2 & 2 & 0 \\ 2 & 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 & 2 \\ 0 & 2 & 2 & 0 \\ 0 & 2 & 2 & 0 \\ 2 & 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 8 & 0 & 0 & 8 \\ 0 & 8 & 8 & 0 \\ 0 & 8 & 8 & 0 \\ 8 & 0 & 0 & 8 \end{bmatrix}$$

and there are thus eight ways of getting from v_1 to v_4 using four edges. Hence the total is ten ways.

(b) If the adjacency matrix A is raised to the power k then the number $a_{i,j}^{(k)}$ in the matrix A^k is the number of ways of getting from the vertex v_i to the vertex v_j using exactly k edges. This result can be used to find the shortest path from the vertex v_i to the vertex v_i by successively calculating the matrices A, A², A³,, until there is a non zero number in the (i, j) th place in the matrix.

MARKS

M5, C5 split at discretion

C1

C1

C1

R1

C1

R4, split at discretion.

(iii) Since the matrix is 5×6 , there are 5 vertices and 6 edges. The element b_{ij} in B is 1 if the edge e_j is incident with the vertex v_i and zero if not. Hence the graph is of the form

MARKS

C4

7(a)		X ₁ is Poisson with mean 5.	MARKS		
	(i) $\Pr(X_1 = 0)$	$(0) = e^{-5} = 0.0067$	C2		
	(ii) $Pr(X_1 >$	10) = Pr (X ₁ \ge 11) = 0.0137	C2		
The total weekly amount in sales is a_1X_1 where a_1 is 200.					
The mean is		$a_1 E[X_1] = 200 \times 5 = 1000$	C2		
The variance	is	$a_1^2 \operatorname{Var} [X_1] = (200)^2 \times 5 = 200,000$	C2		
For both mos	dels the mean is	$a_1 E[X_1] + a_2 E[X_2] = (200 \times 5) + (250 \times 3)$			
		= 1750	C2		
and the varia	nce is	$a_1^2 \operatorname{Var} [X_1] + a_2^2 \operatorname{Var} [X_2] = 200,000 + 187,500$	2		
		= 387,500	C2		
giving a stan	dard deviation of	f 622.49. All results in dollars.	Cl		

giving a standard deviation of 622.49. All results in dollars.

(b) Model :
$$X_A \text{ is } N(\mu_A, \sigma_{A^2})$$

 $\Rightarrow \overline{X}_A \text{ is } N(\mu_A, \frac{\sigma_{A^2}}{n_A}).$
C3

Now $\overline{x}_A = 57.5$ is a reading of \overline{X}_A and σ_{A^2} is unknown estimate using $s_A = 3.7$. Then

$$t = \frac{\bar{x}_{A} - \mu_{A}}{s_{A} / \sqrt{n_{A}}}$$

is a reading of t with $n_A - 1 = 24$ degrees of freedom.

The 95% confidence interval for $\mu_{\!A}$ is

$$\bar{x}_{A} \pm t_{0.025} (24 \text{ d.f.}) \frac{s_{A}}{\sqrt{n_{A}}}$$

C3

C4

C2

and for the given values this is

$$57.5 \pm 2.06 \times \frac{3.7}{\sqrt{25}}$$

$$= 57.5 \pm 1.52$$

and so the confidence interval is (55.98, 59.02).

Since the $\mu_{\!A}^{}\,$ value of 60 is not included in this 95% interval the assumption of a

mean service time of 60 minutes is not accepted.

Note to markers: Candidates may have been taught to use the unbiased estimate for the variance, namely $(3.7)^2 \times \frac{25}{24}$. If this is used the interval becomes

(55.94, 59.06) and full marks should be awarded.

(c) Assume that
$$\overline{X}_A$$
 is $N(\mu_A, \frac{\sigma_{A^2}}{n_A})$ and that \overline{X}_B is $N(\mu_B, \frac{\sigma_{B^2}}{n_B})$. C2

Assume further a common variance σ^2 .

Then
$$\overline{X}_A - \overline{X}_B$$
 is $N(\mu_A - \mu_B, \frac{\sigma^2}{n_A} + \frac{\sigma^2}{n_B})$.

Estimate the unknown σ^2 by the pooled variance estimate $(n_A - 1)s_A^2 + (n_B - 1)s_A^2$

$$s^{2} = \frac{(n_{A} - 1)s_{A}^{2} + (n_{B} - 1)s_{B}^{2}}{n_{A} + n_{B} - 2}$$

7

The 95% confidence interval for $\mu_{\!A}^{}~-~\mu_{\!B}^{}$ is

$$\vec{x}_{A} - \vec{x}_{B} \pm t_{0.025} (n_{A} + n_{B} - 2) \times s \sqrt{\frac{1}{n_{A}} + \frac{1}{n_{B}}}$$

and for the given data this becomes

$$57.5 - 61.7 \pm 2.02 \text{ s} \times \sqrt{\frac{1}{25} + \frac{1}{20}} - 4.2 \pm 2.02 \text{ s} \times \frac{3}{10}$$

where

$$s^2 = \frac{24 \times (3.7)^2 + 19 \times (3.1)^2}{43} = 11.887$$

and so

Hence the interval is

$$-4.2 \pm 2.02 \times 3.45 \times \frac{3}{10} = -4.2 \pm 2.09$$

(-6.29, -2.11).

or

The postulated value of $\mu_A - \mu_B = 0$ does not lie in this 95% interval and so the hypothesis that $\mu_A = \mu_B$ is rejected at the 5% significance level.

s = 3.45.

M3, A2

C2

C2

C2

MARKS

C2

 $\vartheta(i)(a)$ Given the series $\sum_{n=1}^{\infty} a_n$, let f(x) be such that $f(n) = a_n$ for all $n \in \mathbb{N}$.

If f(x) is positive, continuous and decreasing for $x \ge 1$ then the series converges if $\int f(x) dx$ is finite and diverges otherwise.

Taking the function to be

00

$$f(x) = \frac{x}{x^2 + 1}$$

then clearly it is positive for $x \ge 1$, it is continuous and

$$\int_{1}^{\infty} \frac{x}{x^{2} + 1} dx = \frac{1}{2} \int_{1}^{\infty} \frac{2x}{x^{2} + 1} dx = \frac{1}{2} \lim_{t \to \infty} \int_{1}^{t} \frac{2x}{x^{2} + 1} dx$$
$$= \frac{1}{2} \lim_{t \to \infty} \log_{e}(t^{2} + 1) \Big|_{1}^{t} = \frac{1}{2} \lim_{t \to \infty} \log_{e} t - \frac{1}{2} \log_{e} 2 \qquad M2, A2$$

The natural logarithm tends to infinity as x tends to infinity and so the integral does not exist. Hence the series diverges.

(b) The series
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 converges if $p > 1$ and diverges if $0 .$

Setting
$$p = \frac{1}{2}$$
 yields the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ which diverges.

By comparison,

$$\sum_{n=1}^{\infty} \frac{1}{2 + \sqrt{n}} < \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \\ 0 < \frac{1}{2 + \sqrt{n}} < \frac{1}{\sqrt{n}} , n \in \mathbb{N},$$

since

but even though
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
 diverges this tells us nothing about the series.

 $\sum_{n=1}^{\infty} \frac{1}{2 + \sqrt{n}}$. However, setting p = 1, and comparing $\sum_{n=1}^{\infty} \frac{1}{2 + \sqrt{n}}$ with

M2, C2

 $\sum_{n=1}^{\infty} \frac{1}{n} \text{ it is seen that } 2 + \sqrt{n} < n \implies \frac{1}{2 + \sqrt{n}} > \frac{1}{n} \text{ for } n > 4.$ $\sum_{n=1}^{\infty} \frac{1}{2+\sqrt{n}} > \sum_{n=1}^{\infty} \frac{1}{n}$

Hence.

and as the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, so does $\sum_{n=1}^{\infty} \frac{1}{2 + \sqrt{n}}$.

Alternatively, the comparison test with p = 1/2 can be used by considering $1/\sqrt{n} < 2/(2 + \sqrt{n})$ for n > 4.

R4, split at discretion

MARKS

C2

Cl

C2

(ii)(a) The first two terms of the Taylor series for f(x) about a point x_n are

$$f(x) = f(x_n) + (x - x_n) f'(x_n)$$

and if we denote this by p(x) we obtain

$$p(x) = f(x_n) + (x - x_n) f'(x_n) = 0.$$

If x_{n+1} is a real number such that $p(x_{n+1}) = 0$ then

$$f(x_n) + (x_{n+1} - x_n) f'(x_n) = 0$$

and solving for x_{n+1} yields

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Given a value x_0 , the above expression generates the sequence x_0, x_1, x_2, \dots . This is the Newton Raphson iterative method for approximating a root of f(x).

(b) Applying the above method to the equation $x^2 - c = 0$ gives

$$x_{n+1} = x_n - \frac{x_n^2 - c}{2x_n} = \frac{1}{2} \left\{ x_n + \frac{c}{x_n} \right\}.$$
 C3

Then, adding or subtracting \sqrt{c} from each side gives

$$x_{n+1} \pm \sqrt{c} = \frac{1}{2} \left\{ x_n + \frac{c}{x_n} \right\} \pm \sqrt{c} \qquad = \frac{1}{2x_n} \left\{ x_n^2 \pm 2\sqrt{c} x_n + c \right\} \\ = \frac{1}{2x_n} (x_n \pm \sqrt{c})^2. \qquad C3$$

Taking the ratio of the above expressions gives

$$\frac{x_{n+1} - \sqrt{c}}{x_{n+1} + \sqrt{c}} = \left(\frac{x_n - \sqrt{c}}{x_n + \sqrt{c}}\right)^2$$

and similarly

$$\frac{x_{n} - \sqrt{c}}{x_{n} + \sqrt{c}} = \left(\frac{x_{n-1} - \sqrt{c}}{x_{n-1} + \sqrt{c}}\right)^{2}.$$

and so putting these together yields

$$\frac{x_{n+1} - \sqrt{c}}{x_{n+1} + \sqrt{c}} = \left[\left(\frac{x_{n-1} - \sqrt{c}}{x_{n-1} + \sqrt{c}} \right)^2 \right]^2$$

Repeating this process eventually gives

$$\frac{x_{n+1} - \sqrt{c}}{x_{n+1} + \sqrt{c}} = \left(\frac{x_0 - \sqrt{c}}{x_0 + \sqrt{c}}\right)^{2^{n+1}}.$$

Then, if $x_0 > 0$, the ratio $\left(\frac{x_0 - \sqrt{c}}{x_0 + \sqrt{c}}\right) < 1$ and so as n increases the right hand side of the above tends to zero. Hence the left hand side tends to zero and so $x_{n+1} \rightarrow \sqrt{c}$.

R3

C2

C3

C2

MARKS

R2, C2